运用大型通用有限元软件ANSYS建立跨度3300毫米、3600毫米、3900毫米、4060毫米、4200毫米的精细非线性有限元模型。该模型采用静态分析,在求解过程中,考虑模型的几何非线性、材料非线性以及应力刚化效应,求解类型选择“大变形静力”,迭代方式按照默认选项,输出计算的所有的荷载步和子步的结果。

  第一,应力分布。通过有限元非线性分析,对装配式钢结构桁架梁在竖向荷载下的极限承载能力、变形特性和破坏形态进行探究,从而找到桁架梁的受力薄弱区域,对应力分布和发展规律做进一步研究,从本质上获得钢桁架梁的工作性能和破坏机理。

  试验结果显示,5种跨度的桁架梁在极限荷载作用下的应力分布规律基本一致,同种跨度下不同弦杆尺寸的桁架梁在极限荷载作用下的应力分布规律也基本一致。弦杆应力大于腹杆,弦杆受压承受弯矩,腹杆受剪力,所有桁架梁满足规范“强剪弱弯”的设计要求。

  第二,变形情况。由于钢桁架梁位移主要体现在竖向挠度上,因此得到极限荷载作用下的z向位移云图。

  实验显示,极限竖向荷载作用下, z向位移最大值位于梁跨中弦杆处。跨度越大、弦杆尺寸越小,跨中位移越大,但总体的变形分布规律一致。考虑到z向位移在整体变形中起控制作用,故提取5种跨度梁的z向位移最大点的z向位移及对应的竖向荷载值,绘制各跨度桁架梁的荷载位移曲线。

  试验显示,各个跨度下桁架梁模型z向荷载位移曲线发展趋势基本一致。竖向荷载较小时,荷载—位移曲线成线性分布,结构处于弹性阶段;随着荷载逐渐加大,桁架梁跨中上弦杆先达到屈服;继续加大竖向荷载作用,桁架梁跨中弦杆处屈曲变形急速增长,表现出塑性特征。

  通过试验可以看出管桁架是如何设计的,增加弦杆尺寸可以有效地增大桁架梁的承载力,但也不是无限的增加。几种桁架梁极限荷载为屈服荷载的1.3倍左右,使得构件从屈服到破坏有一定的安全空间,可保证构件安全有效。